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S 0797-1443

ON CLOSED ORBITS FOR

TWISTED AUTONOMOUS TONELLI LAGRANGIAN FLOWS

GABRIELE BENEDETTI

Abstract. These lecture notes were prepared in occasion of a mini-course

given by the author at the ”CIMPA Research School - Hamiltonian and La-
grangian Dynamics” (10–19 March 2015 - Salto, Uruguay). In this series of

talk we illustrated some techniques to prove the existence of periodic orbits of

prescribed energy for autonomous Tonelli Lagrangian systems on the twisted
cotangent bundle of a closed manifold.
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1. Introduction

The study of invariant sets plays a crucial role in the understanding of the prop-
erties of a dynamical system: it can be used to obtain information on the dynamics
both at a local scale, such as the existence of nearby stable motions, and at a
global one, such as the presence of chaos (see [Mos73]). In the realm of continuous
flows periodic orbits are the simplest example of invariant sets and, therefore, they
usually represent the first object of study. For systems admitting a Lagrangian
formulation closed orbits received special consideration in the past years, in par-
ticular for the cases having geometrical or physical significance, such as geodesic
flows [Kli78] or mechanical flows in phase space [Koz85]. In [Con06] Contreras
formulated a very general theorem about the existence of periodic motions for au-
tonomous Lagrangian systems over compact configuration spaces. This result was
later analysed in detail by Abbondandolo, who discussed it in a series of lecture
notes [Abb13]. It is the purpose of the present paper to give a generalization of such
theorem to systems which admit only a local Lagrangian description (Theorem 1.6
below). Among these we find the important example of magnetic flows on surfaces,
which we introduce in Section 1.6. We look at them in detail in the last part of this
note: we will sketch a different method, devised by Tăımanov in [Tăı93], to find
periodic orbits with low energy and we will study the stability of the energy levels,
a purely symplectic property, which has important consequences for the existence
of periodic orbits.

Let us start now our study by making precise the general setting in which we
work.

1.1. Twisted Lagrangian flows over closed manifolds. Let M be a closed
connected n-dimensional manifold and denote by

π : TM −→ M

(q, v) 7−→ q

π : T ∗M −→ M

(q, p) 7−→ q

the tangent and the cotangent bundle projection of M . Let us fix also an auxiliary
Riemannian metric g on M and let | · | denote the associated norm.

Let σ ∈ Ω2(M) be a closed 2-form on M which we refer to as the magnetic
form. We call twisted cotangent bundle the symplectic manifold (T ∗M,ωσ), where
ωσ := dλ− π∗σ. Here λ is the canonical 1-form defined by

λ(q,p) = p ◦ d(q,p)π , ∀ (q, p) ∈ T ∗M .
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If K : T ∗M → R is a smooth function, we denote by t 7→ Φ
(K,σ)
t the Hamiltonian

flow of K. It is generated by the vector field X(K,σ) defined by

ωσ(X(K,σ), · ) = −dK .

In local coordinates on T ∗M such flow is obtained by integrating the equations

(1)


q̇ =

∂K

∂p
,

ṗ = −∂K
∂q

+ σ

(
∂K

∂p
, ·
)
.

The function K is an integral of motion for Φ(K,σ). Moreover, if k is a regular value
for K, then the flow lines lying on {K = k} are tangent to the 1-dimensional dis-
tribution kerωσ|{K=k}. This means that if K ′ : T ∗M → R is another Hamiltonian

with a regular value k′ such that {K ′ = k′} = {K = k}, then Φ(K′,σ) and Φ(K,σ)

are the same up to a time reparametrization on the common hypersurface. In other
words, there exists a smooth family of diffeomorphisms τz : R → R parametrized
by z ∈ {K ′ = k′} = {K = k} such that

τz(0) = 0 and Φ
(K,σ)
t (z) = Φ

(K′,σ)
τz(t) (z) .

Hence, there is a bijection between the closed orbits of the two flows on the hyper-
surface.

Let L : TM → R be a Tonelli Lagrangian. This means that for every q ∈ M ,
the restriction L|TqM is superlinear and strictly convex (see [Abb13]):

(2)

lim
|v|→+∞

L(q, v)

|v|
= +∞ , ∀ q ∈M ,

∂2L

∂v2
(q, v) > 0 , ∀ (q, v) ∈ TM ,

where ∂2L
∂v2 (q, v) is the Hessian of L|TqM at v ∈ TqM . The Legendre transform

associated to L is the fibrewise diffeomorphism

L : TM −→ T ∗M

(q, v) 7−→ ∂L

∂v
(q, v) .

The Legendre dual of L is the Tonelli Hamiltonian

H : T ∗M −→ R

(q, p) 7−→ p
(
L−1(q, p)

)
− L

(
L−1(q, p)

)
,

which satisfies the analogue of (2) on T ∗M . For every k ∈ R, let Σ∗k := {H = k}.
These sets are compact and invariant for Φ(H,σ). As a consequence such a flow is
complete. We can use L to pull back to TM the Hamiltonian flow of H.

Definition 1.1. Let Φ(L,σ) be the flow on TM defined by conjugation

L ◦ Φ(L,σ) = Φ(H,σ) ◦ L .

We call Φ(L,σ) a twisted Lagrangian flow and we write X(L,σ) for its generating

vector field. Since Φ(H,σ) is complete, Φ(L,σ) is complete as well.
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The next proposition shows that the flow Φ(L,σ) is locally a standard Lagrangian
flow.

Proposition 1.2. Let U ⊂ M be an open set such that σ|U = dθ for some θ ∈
Ω1(U). There holds

X(L−θ,0) = X(L,σ)|U ,
where L−θ : TU → R is the Tonelli Lagrangian defined by (L−θ)(q, v) = L(q, v)−
θq(v) and X(L−θ,0) is the standard Lagrange vector field of L− θ.

The proof of this result follows from the next exercise.

Exercise 1. Prove the following generalization of the Euler-Lagrange equations.
Consider a smooth curve γ : [0, T ] → M . Then, the curve (γ, γ̇) is a flow line
of X(L,σ) if and only if for every open set W ⊂ M and every linear symmetric
connection ∇ on W ,

(3)

(
∇γ̇

∂L

∂v

)
(γ, γ̇) =

∂L

∂q
(γ, γ̇) + σγ(γ̇, ·)

at every time t ∈ [0, T ] such that γ(t) ∈ W . In the above formula ∂L
∂q ∈ T ∗M

denotes the restriction of the differential of L to the horizontal distribution given
by ∇.

1.2. The magnetic form. Let [σ] ∈ H2(M ;R) denote the cohomology class of σ.
We observe that for any θ ∈ Ω1(M), there holds

X(L+θ,σ+dθ) = X(L,σ) .

Since L + θ is still a Tonelli Lagrangian, we expect that general properties of the
dynamics depend on σ only via [σ]. Moreover, if θ ∈ Ω1(M) is defined by θq :=

−∂L∂v (q, 0), then

min
v∈TqM

(
L(q, v) + θq(v)

)
= L(q, 0) + θq(0) , ∀ q ∈M .

Therefore, without loss of generality we assume from now on that L|TqM attains its
minimum at (q, 0), for every q ∈M .

We can refine the classification of σ given by [σ] by looking at the cohomological
properties of its lift to the universal cover. Let σ̃ be the pull-back of σ to the

universal cover M̃ → M . We say that σ is weakly exact if [σ̃] = 0. This is
equivalent to asking that∫

S2

u∗σ = 0 , ∀u : S2 −→M .

We say that σ admits a bounded weak primitive if there is θ̃ ∈ Ω1(M̃) such that

dθ̃ = σ̃ and
sup
q̃∈M̃
|θ̃q̃| < +∞ .

In this case we write [σ̃]b = 0. Notice that both notions that we just introduced
depend on σ only via [σ].

Exercise 2. If M is a surface and [σ] 6= 0, show that

• if M = S2, then [σ̃] 6= 0;
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• if M = T2, then [σ̃] = 0, but [σ̃]b 6= 0;
• if M /∈ {S2,T2}, then [σ̃]b = 0.

Using the second point, prove that

• if M = Tn and [σ] 6= 0, then [σ̃] = 0, but [σ̃]b 6= 0;
• if M is any manifold and [σ̃]b = 0, then∫

T2

u∗σ = 0 , ∀u : T2 −→M .

1.3. Energy. As twisted Lagrangian flows are described by an autonomous Hamil-
tonian on the twisted cotangent bundle, they possess a natural first integral. It is
the Tonelli function E : TM → R given by E := H ◦L. We call it the energy of the
system and we write Σk := {E = k}, for every k ∈ R. Let V : M → R denote the
restriction of E to the zero section and let em(L) and e0(L) denote the minimum
and maximum of V , respectively.

Proposition 1.3. The energy can be written as

E(q, v) =
∂L

∂v
(q, v)(v) − L(q, v)

and, for every q ∈M , we have

min
v∈TqM

E(q, v) = E(q, 0) = V (q) = −L(q, 0) .

Moreover,

• k > e0(L) if and only if π : Σk →M is an Sn−1-bundle (isomorphic to the
unit tangent bundle of M).
• k < em(L) if and only if Σk = ∅.

Exercise 3. If q0 ∈ M is a critical point of V , then (q0, 0) is a constant periodic
orbit of Φ(L,σ) with energy V (q0).

1.4. The Mañé critical value of the universal cover. When σ is weakly exact
we define the Mañé critical value of the universal cover as

(4) c(L, σ) := inf
dθ̃= σ̃

(
sup
q̃∈M̃

H̃(q̃, θ̃q̃)

)
∈ R ∪ {+∞} ,

where H̃ : T ∗M̃ → R is the lift of H to M̃ . This number plays an important role,
since as it will be apparent from Theorem 1.6 and the examples in Section 1.6 the
dynamics on Σk changes dramatically when k crosses c(L, σ).

Proposition 1.4. If σ is weakly exact, then

• c(L, σ) < +∞ if and only if [σ̃]b = 0;
• c(L, σ) ≥ e0(L);
• if σ = dθ0, where θ0(·) = L(·, 0), then c(L, σ) = e0(L) and the converse is

true, provided e0(L) = em(L);
• given two Tonelli Lagrangians L1 and L2 and two real numbers k1 and k2

such that {H1 = k1} = {H2 = k2}, then

c(L1, σ) ≥ k1 ⇐⇒ c(L2, σ) ≥ k2 and c(L1, σ) ≤ k1 ⇐⇒ c(L2, σ) ≤ k2 .
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1.5. Example I: electromagnetic Lagrangians. Let g be a Riemannian metric
on M and V : M → R be a function. Suppose that the Lagrangian is of mechanical
type, namely it has the form

L(q, v) =
1

2
|v|2 − V (q) ,

where | · | is the norm associated to g. In this case we refer to Φ(L,σ) as a magnetic
flow since we have the following physical interpretation of this system: it models
the motion of a charged particle γ moving in M under the influence of a potential V
and a stationary magnetic field σ. Using Exercise 1, the equation of motion reads

(5) ∇γ̇ γ̇ = −∇V (γ) + Yγ(γ̇) ,

where ∇V is the gradient of V and, for every q ∈ M , Yq : TqM → TqM is defined
by

gq(Yq(v1), v2) = σq(v1, v2) , ∀ v1, v2 ∈ TqM .

Exercise 4. Prove that, if k > maxV , Φ(L,σ)|Σk can be described in terms of a
purely kinetic system. Namely, define the Jacobi metric gk := k−V

k g and the La-

grangian Lk(q, v) := 1
2 |v|

2
k, where | · |k is the norm induced by gk. Using the Hamil-

tonian formulation, show that Φ(L,σ)|{E=k} is conjugated (up to time reparametriza-

tion) to Φ(Lk,σ)|{Ek=k}, where Ek is the energy function of Lk.

In the particular case M = S2, magnetic flows describe yet another interesting
mechanical system. Consider a rigid body in R3 with a fixed point and moving
under the influence of a potential V . Suppose that V is invariant under rotations
around the axis ẑ. We identify the rigid body as an element ψ ∈ SO(3). Since SO(3)
is a Lie group, we use left multiplications to get TSO(3) ' SO(3) × R3 3 (ψ,Ω),
where Ω is the angular speed of the body. Thus, we have a Lagrangian system on
SO(3) with L = 1

2 |Ω|
2 − V (ψ) and σ = 0. Here | · | denote the metric induced by

the tensor of inertia of the body.
The quotient of SO(3) by the action of the group of rotations around ẑ is a

two-sphere. The quotient map q : SO(3) → S2 sends ψ to the unit vector in R3,
whose entries are the coordinates of ẑ in the basis determined by ψ.

By the rotational symmetry, the quantity Ω · ẑ is an integral of motion. Hence,
for every ω ∈ R, the set {Ω · ẑ = ω} ⊂ TSO(3) is invariant under the flow and we
have the commutative diagram(

{Ω · ẑ = ω}, X(L,0)

) dq
//

π

��

(
TS2, X(Lω,σω)

)
π

��

SO(3)
q

// S2 .

The resulting twisted Lagrangian system (Lω, σω) on S2 can be described as follows:

• Lω(q, v) = 1
2 |v|

2 − Vω(q), where | · | is the norm associated to a convex

metric g on S2 (independent of ω) and Vω is a potential (depending on ω);
• σω = ω ·κ, where κ is the curvature form of g (in particular σω has integral

4πω and, if ω 6= 0, it is a symplectic form on S2).

The rigid body model presented in this subsection is described in detail in [Kha79].
We refer the reader to [Nov82], for other relevant problems in classical mechanics
that can be described in terms of twisted Lagrangian systems.
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1.6. Example II: magnetic flows on surfaces. We now specialize further the
example of electromagnetic Lagrangians that we discussed in the previous subsec-
tion and we consider purely kinetic systems on a closed oriented Riemannian surface
(M, g). In this case

(6) L(q, v) :=
1

2
|v|2 ,

and σ = f · µ, where µ is the metric area form and f : M → R. The magnetic
endomorphism can be written as Y = f · ı, where ı : TM → TM is the fibrewise
rotation by π/2.

Remark 1.5. If the surface is isometrically embedded in the Euclidean space R3,
Y is the classical Lorentz force. Namely, we have Yq(v) = v×B(q), where × is the
outer product of vectors in R3 and B is the vector field B : M → R3 perpendicular to
M and determined by the equation volR3(B, ·, · ) = σ, where volR3 is the Euclidean
volume.

For purely kinetic systems E = L and, therefore, the solutions of the twisted
Euler-Lagrange equations are parametrized by a multiple of the arc length. More
precisely, if (γ, γ̇) ⊂ Σk, then |γ̇| =

√
2k. In particular, the solutions with k = 0

are exactly the constant curves. To characterise the solutions with k > 0 we write
down explicitly the twisted Euler-Lagrange equation (5):

(7) ∇γ̇ γ̇ = f(γ) · ıγ̇ .

We see that γ satisfies (7) if and only if |γ̇| =
√

2k and

(8) κγ = s · f(γ) , s :=
1√
2k

,

where κγ is the geodesic curvature of γ. The advantage of working with Equation
(8) is that it is invariant under orientation-preserving reparametrizations.

Let us do some explicit computations when the data are homogeneous. Thus,
let g be a metric of constant curvature on M and let σ = µ. When M 6= T2 we
assume, furthermore, that the absolute value of the Gaussian curvature is 1. By
(8), in order to find the trajectories of Φ(L,σ) we need to solve the equation κγ = s
for all s > 0.

Denote by M̃ the universal cover of M . Then, S̃2 = S2, T̃2 = R2 and, if M

has genus larger than one, M̃ = H, where H is the hyperbolic plane. Our strategy
will be to study the trajectories of the lifted flow and then project them down to
M . Working on the universal cover is easier since there the problem has a bigger
symmetry group. Notice, indeed, that the lifted flow is invariant under the group

of orientation preserving isometries Iso+(M̃).

1.6.1. The two-sphere. Let us fix geodesic polar coordinates (r, ϕ) ∈ (0, π)×R/2πZ
around a point q ∈ S2 corresponding to r = 0. The metric takes the form dr2 +
(sin r)2dϕ2. Let Cr(q) be the boundary of the geodesic ball of radius r oriented
in the counter-clockwise sense. We compute κCr(q) = 1

tan r . Observe that tan r
takes every positive value exactly once for r ∈ (0, π/2). Therefore, if s > 0, the
trajectories of the flow are all supported on Cr(s)(q), where q varies in S2 and

(9) r(s) = arctan
1

s
∈ (0, π/2) .
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In particular, all orbits are closed and their period is

T (s) =
2πs√
s2 + 1

.

1.6.2. The two-torus. In this case we readily see that the trajectories of the lifted
flow are circles of radius r(s) = 1/s. In particular, all the orbits are closed and
contractible. Their period is T (s) = 2π, hence it is independent of s (or k).

1.6.3. The hyperbolic surface. We fix geodesic polar coordinates (r, ϕ) ∈ (0,+∞)×
R/2πZ around a point q ∈ H corresponding to r = 0. The metric takes the form
dr2 + (sinh r)2dϕ2. Defining Cr(q) as in the case of S2, we find κCr(q) = 1

tanh r .
Observe that tanh r takes all the values in (0, 1) exactly once, for r ∈ (0,+∞).
Therefore, if s ∈ (1,+∞), the trajectories of the flow are the closed curves Cr(s)(q),
where q varies in H and

(10) r(s) = arctanh
1

s
∈ (0,+∞)

In particular, for s in this range all periodic orbits are contractible. The formula
for the periods now reads

T (s) =
2πs√
s2 − 1

.

To understand what happens, when s ≤ 1 we take the upper half-plane as a
model for the hyperbolic plane. Thus, let H = { z = (x, y) ∈ C | y > 0 }. In these

coordinates, the hyperbolic metric has the form dx2+dy2

y2 and

Iso+(H) =
{
z 7→ az + b

cz + d

∣∣∣ a, b, c, d ∈ R , ad− bc = 1
}
.

We readily see that the affine transformations z 7→ az, with a > 0 form a subgroup
of Iso+(H). This subgroup preserves all the Euclidean rays from the origin and acts
transitively on each of them. Hence, we conclude that such curves have constant
geodesic curvatures. If ϕ ∈ (0, π) is the angle made by such ray with the x-axis, we
find that the geodesic curvature of such ray is cosϕ. In order to do such computation
one has to write the metric using Euclidean polar coordinates centered at the origin.
Using the whole isometry group, we see that all the segments of circle intersecting
∂H with angle ϕ have geodesic curvature cosϕ.

We claim that if s ∈ (0, 1) and ν 6= 0 is a free homotopy class of loops of M , there
is a unique closed curve γs,ν in the class ν, which has geodesic curvature s. The
class ν correspond to a conjugacy class in π1(M). We identify π1(M) with the set
of deck transformations and we let F : H→ H be a deck transformation belonging
to the given conjugacy class. By a standard result in hyperbolic geometry, F has
two fixed points on ∂H (remember, for example, that there exists a geodesic in H
invariant under F ). Then, γs,ν is the projection to M of the unique segment of
circle connecting the fixed points of F and making an angle ϕ = arccos s with ∂H.
The uniqueness of γs,ν stems form the uniqueness of such segment of circle.

In a similar fashion, we consider the subgroup of Iso+(H) made by the maps
z 7→ z + b, with b ∈ R. It preserves the horizontal line {y = 1} and act transitively
on it. Hence, such curve has constant geodesic curvature. A computation shows
that it is equal to 1, if it is oriented by ∂x. Using the whole isometry group, we
see that all the circles tangent to ∂H have geodesic curvature equal to 1. Following
[Gin96] we see that there is no closed curve in M with such geodesic curvature. By
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contradiction, if such curve exist, then its lift would be preserved by a non-constant
deck transformation. We can assume without loss of generality that such lift is the
line {y = 1}. We readily see that the only elements in Iso+(H) which preserve
{y = 1} are the horizontal translation. However, no such transformation can be a
deck transformation, since it has only one fixed point on ∂H.

Exercise 5. Show that in this case c(L, σ) = 1
2 .

1.7. The Main Theorem. We are now ready to state the central result of this
mini-course.

Theorem 1.6. The following four statements hold.

(1) Suppose [σ̃]b = 0. For every k > c(L, σ),
(a) there exists a closed orbit on Σk in any non-trivial free homotopy class;
(b) if πd+1(M) 6= 0 for some d ≥ 1, there exists a contractible orbit on

Σk.
(2) Suppose [σ̃] = 0. There exists a contractible orbit on Σk, for almost every

energy k ∈ (e0(L), c(L, σ)).
(3) Suppose [σ̃] 6= 0. There exists a contractible orbit on Σk, for almost every

energy k ∈ (e0(L),+∞).
(4) There exists a contractible orbit on Σk, for almost every k ∈ (em(L), e0(L)).

The set for which existence holds in (2), (3) and (4) contains all the k′s for which
Σ∗k is a stable hypersurface in (T ∗M,ωσ) (see [HZ94, page 122 ]).

In these notes, we will prove (1), (2) and (3) above by relating closed orbits of
the flow to the zeros of a closed 1-form ηk on the space of loops on M . We introduce
such form and prove some of its general properties in Section 2. In Section 3 we
describe an abstract minimax method that we apply in Section 4 to obtain zeros
of ηk in the specific cases listed in the theorem. A proof of (4) relies on different
methods and it can be found in [AB14].

Remark 1.7. When [σ] = 0, the theorem was proven by Contreras [Con06]. Point
(1) and (2), with the additional hypothesis [σ̃]b = 0, were proven by Osuna [Osu05].
Point (2) was proven in [Mer10], for electromagnetic Lagrangians, and in [AB14]
for general systems. A sketch of the proof of point (3) was given in [Nov82, Section
3] and in [Koz85, Section 3.2]. It was rigorously established in [AB14]. Point (4)
follows by employing tools in symplectic geometry. For the weakly exact case it can
also be proven using a variational approach as shown in [Abb13, Section 7]. For
Lagrangians of mechanical type and vanishing magnetic form the existence problem
in such interval has historically received much attention (see [Koz85, Section 2] and
references therein).

We end up this introduction by defining the notion of stability mentioned in the
theorem.

1.8. Stable hypersurfaces. In general, the dynamics on Σ∗k may exhibit very
different behaviours as k changes. However, given a regular energy level Σ∗k0 , in
some special cases we can find a new Hamiltonian H ′ : T ∗M → R such that
{H ′ = k′0} = Σ∗k0 and such that Φ(H′,σ)|{H′=k′0} and Φ(H′,σ)|{H′=k′} are conjugated,
up to a time reparametrization, provided k′ is sufficiently close to k′0.
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Definition 1.8. We say that an embedded hypersurface ı : Σ∗ −→ T ∗M is stable
in the symplectic manifold (T ∗M,ωσ) if there exists an open neighbourhood W of
Σ∗ and a diffeomorphism ΨW : Σ∗ × (−ε0, ε0)→W with the property that:

• ΨW |Σ∗×{0} = ı;

• the function HW : W → R defined through the commutative diagram

Σ∗ × (−ε0, ε0)
ΨW //

pr2

��

W ,

HW
xx

(−ε0, ε0)

is such that, for every k ∈ (−ε0, ε0),

Φ(HW ,σ)|{HW=0} and Φ(HW ,σ)|{HW=k}

are conjugated by the diffeomorphism

w 7→ ΨW (ı−1(w), k)

up to time reparametrization. In this case, the reparametrizing maps τ(z,k)

vary smoothly with (z, k) ∈ Σ∗ × (−ε0, ε0) and satisfy τ(z,0) = IdR, for all
z ∈ Σ∗.

This implies that there is a bijection between the periodic orbits on Σ∗ = {HW = 0}
and those on {HW = k}.

Thanks to a result of Macarini and G. Paternain [MP10], if Σ∗ is the energy
level of some Tonelli Hamiltonian, the function HW can be taken to be Tonelli as
well.

Proposition 1.9. Suppose that for some k > e0(L), Σ∗k is stable with stabilizing
neighbourhood W . Up to shrinking W , there exists a Tonelli Hamiltonian Hk :
T ∗M → R such that HW = Hk on W .

In order to check whether an energy level is stable or not, we give the following
necessary and sufficient criterion that can be found in [CM05, Lemma 2.3].

Proposition 1.10. A hypersurface Σ∗k is stable if and only if there exists α ∈
Ω1(Σ∗k) such that

(a) dα(X(H,σ), · ) = 0 , (b) α(X(H,σ))(z) 6= 0 , ∀ z ∈ Σ∗k .

In this case α is called a stabilizing form. The first condition is implied by the
following stronger assumption

(a’) dα = ωσ|Σ∗k .

If (a’) and (b) are satisfied we say that Σ∗k is of contact type and we call α a contact
form. We distinguish between positive and negative contact forms according to the
sign of the function α(X(H,σ)).

In Section 6, we give some sufficient criteria for stability for magnetic flows on
surfaces.
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2. The free period action form

For the proof of the Main Theorem we need to characterize the periodic orbits
on Σk via a variational principle on a space of loops. To this purpose we have first
to adjust L.

2.1. Adapting the Lagrangian. Let us introduce a class of Tonelli Lagrangians
whose fibrewise growth is quadratic. In this class we will be enabled to define the
action functional on the space of loops with square-integrable velocity.

Definition 2.1. We say that L is quadratic at infinity if there exists a metric g∞
and a potential V∞ : M → R such that L(q, v) = 1

2 |v|
2
∞ − V∞(q) outside a compact

set.

The next result tells us that, if we look at the dynamics on a fixed energy level,
it is not restrictive to assume that the Lagrangian is quadratic at infinity.

Proposition 2.2. For any fixed k ∈ R, there exists a Tonelli Lagrangian Lk :
TM → R which is quadratic at infinity and such that Lk = L on {E ≤ k0}, for
some k0 > k. By choosing k0 sufficiently large, we can obtain e0(L) = e0(Lk) and,
if [σ̃] = 0, also c(L, σ) = c(Lk, σ).

From now on, we assume that L is quadratic at infinity. In this case there exist
positive constants C0 and C1 such that

(11) C1|v|2 − C0 ≤ L(q, v) ≤ C1|v|2 + C0 , ∀ (q, v) ∈ TM .

An analogous statement holds for the energy.

2.2. The space of loops. We define the space of loops where the variational
principle will be defined. Given T > 0, we call W 1,2(R/TZ,M) the set{

γ : R/TZ→M
∣∣∣ γ is absolutely continuous ,

∫ T

0

|γ̇|2 dt <∞
}
.

Since we look for periodic orbits of arbitrary period, we want to let T vary among all
the positive real numbers R+. This is the same as fixing the parametrization space
to T := R/Z and keeping track of the period as an additional variable. Namely, we
have the identification⊔

T>0

W 1,2(R/TZ,M) −→ Λ := W 1,2(T,M)× R+

γ(t) 7−→
(
x(s) := γ(sT ), T

)
.

Given a free homotopy class ν ∈ [T,M ], we denote by W 1,2
ν ⊂ W 1,2(T,M) and

Λν ⊂ Λ the loops belonging to such class. We use the symbol 0 for the class of
contractible loops.

Proposition 2.3. The set Λ is a Hilbert manifold with T(x,T )Λ ' TxW
1,2 × R,

where TxW
1,2 'W 1,2(T, x∗(TM)) is the space of absolutely continuous vector fields

along x with square-integrable covariant derivative. The metric on Λ is given by
gΛ = gW 1,2 + dT 2, where

(gW 1,2)x(ξ1, ξ2) :=

∫ 1

0

gx(s)(ξ1(s), ξ2(s)) ds +

∫ 1

0

gx(s)(ξ
′
1(s), ξ′2(s)) ds .

For any T− > 0, W 1,2 × [T−,+∞) ⊂ Λ is a complete metric space.
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For more details on the space of loops we refer to [Abb13, Section 2] and [Kli78].
We end this subsection with two more definitions, which will be useful later on.
First, we let

∂

∂T
∈ Γ(Λ)

denote the coordinate vector associated with the variable T . Then, if x ∈W 1,2, we
let

e(x) :=

∫ 1

0

|x′|2ds and `(x) :=

∫ 1

0

|x′|ds

be the L2-energy and the length of x, respectively. We define analogous quantities
for γ ∈ Λ. We readily see that `(x) = `(γ) and e(x) = Te(γ). Moreover, `(x)2 ≤
e(x) holds.

2.3. The action form. In this subsection, for every k ∈ R, we construct ηk ∈
Ω1(Λ), which vanishes exactly at the set of periodic orbits on Σk. Such 1-form will
be made of two pieces: one depending only on L and k and one depending only on
σ. The first piece will be the differential of the function

Ak : Λ −→ R

γ 7−→
∫ T

0

[
L(γ, γ̇) + k

]
dt = T ·

∫ 1

0

[
L

(
x,
x′

T

)
+ k

]
ds .

Such function is well-defined since L is quadratic at infinity (see (11)). It was
proven in [AS09] that Ak is a C1,1 function (namely, Ak is differentiable and its
differential is locally uniformly Lipschitz-continuous).

In order to define the part of ηk depending on σ, we first introduce a differential
form τσ ∈ Ω1(W 1,2) called the transgression of σ. It is given by

τσx (ξ) :=

∫ 1

0

σx(s)(ξ(s), x
′(s)) ds , ∀ (x, ξ) ∈ TW 1,2 .

By writing τσ in local coordinates, it follows that it is locally uniformly Lipschitz.
If u : [0, 1]→W 1,2 is a path of class C1, then

(12)

∫ 1

0

u∗τσ =

∫
[0,1]×T

û∗σ ,

where û : [0, 1]×T→M is the cylinder given by û(r, t) = u(r)(t). If ua : T→W 1,2

is a homotopy of closed paths with parameter a ∈ [0, 1], then we get a corresponding
homotopy of tori ûa. Since σ is closed, the integral of û∗aσ on T2 is independent of
a. We conclude that the integral of τσ on ua does not depend on a either. Namely,
τσ is a closed form.

Definition 2.4. The free period action form at energy k is ηk ∈ Ω1(Λ) defined as

(13) ηk := dAk − pr∗W 1,2 τσ ,

where pr∗W 1,2 : Λ→W 1,2 is the natural projection (x, T ) 7→ x.

Proposition 2.5. The free period action form is closed and its zeros correspond
to the periodic orbits of Φ(L,σ) on Σk.
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The correspondence with periodic orbits follows by computing ηk explicitly on
TW 1,2 × 0 and on ∂

∂T . If ξ ∈ TW 1,2, then

(14) (ηk)γ(ξ, 0) =

∫ T

0

[∂L
∂q

(γ, γ̇) · ξT +
∂L

∂v
(γ, γ̇) · ξ̇T + σγ(γ̇, ξT )

]
dt ,

where ξT is the reparametrization of ξ on R/TZ. In the direction of the period we
have

(ηk)γ

(
∂

∂T

)
= dγAk

(
∂

∂T

)
=

∫ 1

0

L

(
x,
x′

T

)
ds+

+ k − T ·
∫ 1

0

∂L

∂v

(
x,
x′

T

)
· x
′

T 2
ds

= k −
∫ 1

0

E

(
x,
x′

T

)
ds(15)

= k − 1

T

∫ T

0

E(γ, γ̇) dt .

2.4. Vanishing sequences. Our strategy to prove existence of periodic orbits will
be to construct zeros of ηk by approximation.

Definition 2.6. Let ν ∈ [T,M ] be a free homotopy class. A sequence (γm) ⊂ Λν
is called a vanishing sequence (at level k), if

lim
m→∞

|ηk|γm = 0 .

A limit point of a vanishing sequence is a zero of ηk. Thus, the crucial question
is: when does a vanishing sequence admit limit points? Clearly, if Tm → 0 or
Tm → +∞ the set of limit points is empty. We now see that the opposite implication
also holds.

Lemma 2.7. If (γm) is a vanishing sequence, there exists C > 0 such that

(16) e(xm) ≤ C · T 2
m .

Proof. We compute

C1 ·
e(xm)

T 2
m

− C0

(?)

≤
∫ 1

0

E

(
xm,

x′m
Tm

)
ds = k − ηkγm

(
∂

∂T

)
(??)

≤ k + sup
m
|ηk|γm .

where in (?) we used (11) applied to E, and in (??) we used that∣∣∣∣ ∂∂T
∣∣∣∣ = 1 .

The desired estimate follows by observing that, since the sequence
(
|ηk|γm

)
⊂

[0,+∞) is infinitesimal, it is also bounded from above. �

Proposition 2.8. If (γm) is a vanishing sequence and 0 < T− ≤ Tm ≤ T+ < +∞
for some T− and T+, then (γm) has a limit point.
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Proof. By compactness of [T−, T+], up to subsequences, Tm → T∞ > 0. By (16),
the L2-energy of xm is uniformly bounded. Thus, (xm) is uniformly 1/2-Hölder
continuous. By the Arzelà-Ascoli theorem, up to subsequences, (xm) converges
uniformly to a continuous x∞ : T → M . Therefore, xm eventually belongs to
a local chart U of W 1,2. In U , ηk can be written as the differential of a standard
action functional depending on time (see [AB14]) and the same argument contained
in [Abb13, Lemma 5.3] when σ = 0 implies that (γm) has a limit point. �

In order to construct vanishing sequences we will exploit some geometric prop-
erties of ηk. One of the main ingredients to achieve this goal will be to define a
vector field on Λ generalizing the negative gradient vector field of the function Ak.
We introduce it in the next subsection.

2.5. The flow of steepest descent. Let Xk denote the vector field on Λ defined
by

Xk := − ] ηk√
1 + |ηk|2

where ] denote the duality between 1-forms and vector fields induced by gΛ. Since
Xk is locally uniformly Lipschitz, it gives rise to a flow which we denote by r 7→ Φkr .
For every γ ∈ Λ, we denote by uγ : [0, Rγ) → Λ the maximal positive flow line
starting at γ. We say that Φk is positively complete on a subset Y ⊂ Λ if, for all
γ ∈ Λ, either Rγ = +∞ or there exists Rγ,Y ∈ [0, Rγ) such that uγ(Rγ,Y ) /∈ Y .

Except for the scaling factor 1/
√

1 + |ηk|2, the vector field Xk is the natural
generalization of −∇Ak = −](dAk) to the case of non-vanishing magnetic form.
We introduce such scaling so that |Xk| ≤ 1 and we can give the following charac-
terization of the flow lines uγ with Rγ < +∞.

Proposition 2.9. Let u : [0, R) → Λ be a maximal positive flow line of Xk and
for all r ∈ [0, R) set u(r) := γ(r) = (x(r), T (r)). If R < +∞, then there exists a
sequence (rm)m∈N ⊂ [0, R) and a constant C such that

(17) lim
m→∞

rm = R , lim
m→∞

T (rm) = 0 , e(x(rm)) ≤ C · T (rm)2 , ∀m ∈ N .

Proof. By contradiction, we suppose that 0 < T− := inf [0,R) T (r). Since |Xk| ≤ 1,

uγ is uniformly continuous and, by the completeness of W 1,2 × [T−,+∞), there
exists

γ∞ := lim
r→R

u(r) .

By the existence theorem of solutions of ODE’s, there exists a neighbourhood B of
γ∞ and RB > 0 such that

∀ γ ∈ B , r 7−→ Φkr (γ) exists in [0, RB] .

This contradicts the fact that R is finite as soon as r ∈ [0, R) is such that γ(r) ∈ B
and R − r < RB. Therefore, inf T = 0. Hence, we find a sequence rm → R such
that T (rm)→ 0 and, for every m, dT

dr (rm) ≤ 0. The last property implies that

(18) 0 ≥ dT

dr
(rm) = du(rm)T (Xk) = −

ηk
(
∂
∂T

)√
1 + |ηk|2

(u(rm)) .
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Finally, using Equation (15) and the estimates in (11), we have

0 ≤ (ηk)u(r(m))

(
∂

∂T

)
= k −

∫ 1

0

E

(
x(rm),

x′(rm)

T (rm)

)
ds

≤ k − C1

∫ 1

0

|x′(rm)|2

T (rm)2
ds+ C0 .

�

The above proposition shows that flow lines whose interval of definition is finite
come closer and closer to the subset of constant loops. As we saw in Lemma 2.7 the
same is true for vanishing sequences with infinitesimal period. For these reasons in
the next subsection we study the behaviour of the action form on the set of loops
with short length.

2.6. The subset of short loops. We now define a local primitive for ηk close
to the subset of constant loops. For k > e0(L), such primitive will enjoy some
properties that will enable us to apply the minimax theorem of Section 3 to prove
the Main Theorem. For our arguments we will need estimates which hold uniformly
on a compact interval of energies. Hence, for the rest of this subsection we will
suppose that a compact interval I ⊂ (e0(L),+∞) is fixed.

Let M0 ⊂ W 1,2
0 be the constant loops parametrized by T and M0 × R+ ⊂ Λ0

the constant loops with arbitrary period. We readily see that τσ|M0
= 0. Thus,

ηk = dAk|M0×R+ and

(19) Ak(x, T ) = T (k − V (x)) , ∀ (x, T ) ∈M0 × R+ .

Now that we have described ηk on constant loops, let us see what happens nearby.
First, we need the following lemma.

Lemma 2.10. There exists δ∗ > 0 such that {` < δ} ⊂ W 1,2 retracts with defor-
mation on M0, for all δ ≤ δ∗. Thus, we have τσ|{`<δ∗} = dPσ, where

(20)

Pσ : {` < δ∗} −→ R

x 7−→
∫
B2

û∗xσ ,

where ûx : B2 → M is the disc traced by x under the action of the deformation
retraction. Furthermore, there exists C > 0 such that

(21) |Pσ(x)| ≤ C · `(x)2 .

Proof. Choose δ < 2ρ(g), where ρ(g) is the injectivity radius of g. With this choice,
for each x ∈ {` < δ} and each s ∈ T, there exists a unique geodesic ys : [0, 1]→M
joining x(0) to x(s). For each a ∈ [0, 1] define xa : T→M by xa(s) := ys(a). Taking
a smaller δ if necessary, one can prove that a 7→ |x′a| is a non-decreasing family of
functions (use normal coordinates at x(0)). Thus, a 7→ `(xa) is non-decreasing as
well and

[0, 1]× {` < δ} −→ {` < δ}
(a, x) 7−→ xa
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yields the desired deformation. In order to estimate Pσ is enough to bound the
area of the deformation disc ûx:

area(ûx) ≤
∫ 1

0

da

∫ 1

0

∣∣∣∣dysda (a)

∣∣∣∣ · |x′a(s)|ds

≤
∫ 1

0

da

∫ 1

0

d(x(0), x(s))|x′(s)|ds ≤ `(x)

2
`(x) .

�

In view of this lemma, for all δ ∈ (0, δ∗], we define the set

(22) Vδ := {` < δ} × R+ ⊂ Λ0

and the function Sk : Vδ∗ −→ R given by

(23) Sk := Ak − Pσ ◦ prW 1,2 .

Such a function is a primitive of ηk on Vδ∗ . By (11), it admits the following upper
bound.

Proposition 2.11. There exists C > 0 such that, for every γ ∈ Vδ∗ , there holds

(24) Sk(γ) ≤ C ·
(
e(x)

T
+ T + `(x)2

)
, ∀ k ∈ I .

This result has an immediate consequence on vanishing sequences and flow lines of
Φk.

Corollary 2.12. Let b > 0 and k ∈ I be fixed. The following two statements hold:

(1) if (γm) is a vanishing sequence such that γm /∈ {Sk < b} for all m ∈ N,
then Tm is bounded away from zero;

(2) the flow Φk is positively complete on the set Λ \ {Sk < b}.

We conclude this section by showing that the infimum of Sk on short loops is zero
and it is approximately achieved on constant loops with small period. Furthermore,
Sk is bounded away from zero on the set of loops having some fixed positive length.

Proposition 2.13. There exist δI ≤ δ∗ and positive numbers bI , TI such that, for
all k ∈ I,

(25) (a) inf
VδI

Sk = 0 , (b) inf
∂VδI

Sk ≥ bI , (c) sup
M0×{TI}

Sk <
bI
2
.

Proof. Since for all q ∈ M , the function L|TqM attains its minimum at (q, 0), the
estimate from below on L obtained in (11) can be refined to

L(q, v) ≥ C1|v|2 + min
q∈M

L(q, 0) = C1|v|2 − e0(L) .

From this inequality and (21), we can bound from below Sk(γ):

Sk(γ) ≥ T ·
∫ 1

0

[
C1 ·

|x′|2

T 2
− e0(L) + k

]
ds − C · `(x)2

≥ C1 ·
e(x)

T
+ (k − e0(L)) · T − C · `(x)2

(?)

≥ 2
√
C1(min I − e0(L)) · `(x) − C · `(x)2 .
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where in (?) we made use of the inequality between arithmetic and geometric mean.
Hence, there exists δI > 0 sufficiently small, such that the last quantity is positive
if `(x) < δI and bounded from below by

bI := 2
√
C1(min I − e0(L)) · δI − C · δ2

I > 0

if `(x) = δI . This implies Inequality (b) in (25) and that infV δI Sk ≥ 0. To prove
that infV δI Sk ≤ 0 and that there exists TI such that Inequality (c) in (25) holds,
we just recall from (19) that

lim
T→0

sup
M0×{T}

Sk = 0 . �

In the next section we will prove a minimax theorem for a class of closed 1-form
on abstract Hilbert manifolds. Such a class will satisfy a general version of the
properties we have proved so far for ηk.

3. The minimax technique

In this section we present an abstract minimax technique which represents the
core of the proof of the Main Theorem. We formulate it in a very general form on
a non-empty Hilbert manifold H .

3.1. An abstract theorem. We start by setting some notation for homotopy
classes of maps from Euclidean balls into H . Let d ∈ N and U be a subset of H .
Define

[
(Bd, ∂Bd), (H ,U )

]
as the set of homotopy classes of maps γ : (Bd, ∂Bd)→

(H ,U ). By this we mean that the maps send Bd to H and ∂Bd to U , and that
the homotopies do the same. The classes [γ], where γ is such that γ(Bd) ⊂ U are
called trivial. If U ′ ⊂ U , we have a map

iU
′

U :
[
(Bd, ∂Bd), (H ,U ′)

]
−→

[
(Bd, ∂Bd), (H ,U )

]
We are now ready to state the main result of this section.

Theorem 3.1. Let H be a non-empty Hilbert manifold, I = [k0, k1] be a compact
interval and d ≥ 1 an integer. Let αk ∈ Ω1(H ) be a family of Lipschitz-continuous
forms parametrized by k ∈ I and such that

• the integral of αk over contractible loops vanishes;
• αk = αk0 + (k − k0)dT , where T : H → (0,+∞) is a C1,1 function such

that

(26) sup
H
|dT | < +∞ .

Define the vector field

(27) Xk := − ] αk√
1 + |αk|2

,

where ] is the metric duality, and suppose that there exists an open set V ⊂ H
such that:

• there exists Sk : V → R satisfying

(28) dSk = αk , Sk = Sk0 + (k − k0) T ;
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• there exists a real number

(29) β0 < inf
∂V

Sk0 =: β∂V

such that the flow r 7→ ΦXk
r is positively complete on the set H \{Sk < β0};

• there exists a set M ⊂ {Sk1 < β0} and a class G ∈ [(Bd, ∂Bd), (H ,M )
]

such that iMV (G ) is non-trivial.

Then, the following two statements hold true. First, for all k ∈ I , there exists a
sequence (hkm)m∈N ⊂H \ {Sk < β0} such that

lim
m→∞

|αk|hkm = 0 .

Second, there exists a subset I∗ ⊂ I such that

• I \I∗ is negligible with respect to the 1-dimensional Lebesgue measure;
• for all k ∈ I∗ we have

sup
m∈N

T (hkm) < +∞ .

Moreover, if there exists a C1,1-function Ŝk : H → R which extends Sk and
satisfies (28) on the whole H , we also have that

(30) lim
m→∞

Ŝk(hkm) = inf
γ∈G

sup
ξ∈Bd

Ŝk ◦ γ (ξ) ≥ β∂V .

To prove Theorem 1.6(1a) we will also need a version of the minimax theorem
for d = 0, namely when the maps are simply points in H . We state it here for a
single function and not for a 1-parameter family since this will be enough for the
intended application. For a proof we refer to [Abb13, Remark 1.10].

Theorem 3.2. Let H be a non-empty Hilbert manifold and let Ŝ : H → R be a
C1,1-function bounded from below. Suppose that the flow of the vector field

X := − ∇Ŝ√
1 + |∇Ŝ |2

is positively complete on some non-empty sublevel set of Ŝ . Then, there exists a
sequence (hm)m∈N ⊂H such that

(31) lim
m→+∞

|dhmŜ | = 0 , lim
m→+∞

Ŝ (hm) = inf
H

Ŝ .

In the next two subsections we prove Theorem 3.1. First, we introduce some pre-
liminary definitions and lemmas and then we present the core of the argument.

3.2. Preliminary results. We start by defining the variation of the 1-form αk
along any path u : [a0, a1]→H . It is the real number

αk(u) :=

∫ a1

a0

αk

(
du

da

)
(u(a)) da .(32)

We collect the properties of the variation along a path in a lemma.

Lemma 3.3. If u is a path in H and u is the inverse path, we have

(33) αk(u) = −αk(u) .
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If u1 and u2 are two paths in H such that the ending point of u1 coincides with
the starting point of u2, we denote by u1 ∗ u2 the concatenation of the two paths
and we have

(34) αk(u1 ∗ u2) = αk(u1) + αk(u2) ,

If u is a contractible closed path in H , we have

(35) αk(u) = 0 .

Finally, let γ : Z → H be any smooth map from a Hilbert manifold Z such that
there exists a function S γ

k : Z →H with the property that

(36) dS γ
k = γ∗αk .

Then, for all paths z : [a0, a1]→ Z we have

(37) αk(γ ◦ z) = S γ
k (z(a1)) − S γ

k (z(a0)) .

Let us come back to the statement of Theorem 3.1. Fix a point ξ∗ ∈ ∂Bd and
for every γ ∈ G define the unique S γ

k : Bd →H such that

(38) dS γ
k = γ∗αk , S γ

k (ξ∗) = Sk(γ(ξ∗)) .

We observe that this is a good definition since Bd is simply connected and γ(ξ∗)
belongs to the domain of definition of Sk as γ ∈ G . Moreover, if αk admits a global

primitive Ŝk on H extending Sk, then clearly we have S γ
k = Ŝk ◦ γ. Finally,

thanks to the previous lemma, for every ξ ∈ Bd we have the formula

(39) S γ
k (ξ) = Sk(γ(ξ∗)) + αk(γ ◦ zξ) ,

where zξ : [0, 1]→ Bd is any path connecting ξ∗ and ξ.

Remark 3.4. If d 6= 1, then S γ
k does not depend on the choice of the point

ξ∗ ∈ ∂Bd as Sd−1 = ∂Bd is connected. On the other hand, if d = 1 there are
two possible choices for ξ∗ and the two corresponding primitives of γ∗ηk differ by a
constant, which depends only on the class G and not on γ.

Definition 3.5. We define the minimax function cG : I → R ∪ {−∞} by

cG (k) := inf
γ∈G

sup
ξ∈Bd

S γ
k (ξ) .(40)

In the next lemma we show that cG (k) is finite and that, for each γ ∈ G , the points
almost realizing the supremum of the function S γ

k lie in the complement of the set
{Sk < β0}.

Lemma 3.6. Let k ∈ I and γ ∈ G . There holds

(41) sup
Bd

S γ
k ≥ β∂V .

Moreover, if β1 < β∂V , then ∀ ξ ∈ Bd the following implication holds

(42) S γ
k (ξ) ≥ sup

Bd
S γ
k − (β∂V − β1) ===⇒ γ(ξ) /∈ {Sk < β1} .
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Proof. Since iMV (G ) is non-trivial, the set {ξ ∈ Bd | γ(ξ) ∈ ∂V } is non-empty.

Therefore, there exists an element ξ̂ in this set and a path zξ̂ : [0, 1]→ Bd from ξ∗

to ξ̂ such that γ ◦ zξ̂|[0,1) ⊂ V . By (39) and (37) we have

S γ
k (ξ̂) = Sk(γ(ξ∗)) + αk(γ ◦ zξ̂)

= Sk(γ(ξ∗)) +
(
Sk(γ(ξ̂))−Sk(γ(ξ∗))

)
= Sk(γ(ξ̂)) ,

which implies (41) by (29). In order to prove the second statement we consider
ξ ∈ Bd such that γ(ξ) ∈ {Sk < β1}. Without loss of generality there exists a path

zξ,ξ̂ : [0, 1]→ Bd from ξ to ξ̂ such that zξ,ξ̂|[0,1) ⊂ V . Using (37) twice, we compute

sup
Bd

S γ
k ≥ S γ

k (ξ̂) = S γ
k (ξ) + αk(γ ◦ zξ,ξ̂)

= S γ
k (ξ) +

(
Sk(γ(ξ̂))−Sk(γ(ξ))

)
> S γ

k (ξ) +
(
β∂V − β1

)
,

which yields the contrapositive of the implication we had to show. �

We now see that, since the family k 7→ αk is monotone in the parameter k, the
same is true for the numbers cG (k).

Lemma 3.7. If k2 ≤ k3 and γ ∈ G , we have

(43) S γ
k3

= S γ
k2

+ (k3 − k2) T ◦ γ .

As a consequence, cG is a non-decreasing function.

Proof. We observe that

• d
(
S γ
k3
− S γ

k2

)
= γ∗

(
αk3 − αk2

)
= γ∗

(
(k3 − k2) dT

)
• S γ

k3
(ξ∗) − S γ

k2
(ξ∗) = Sk3(γ(ξ∗)) −Sk2(γ(ξ∗)) = (k3 − k2) T (γ(ξ∗)) .

These two equalities imply that the function S γ
k2

+(k3−k2)T ◦γ satisfies (38) with

k = k3. Since these conditions identify a unique function, equation (43) follows. In
particular, we have S γ

k2
≤ S γ

k3
. Taking the inf-sup of this inequality on G , we get

cG (k2) ≤ cG (k3). �

We end this subsection by adjusting the vector field Xk so that its flow becomes
positively complete on all H . We fix β1 ∈ (β0, β∂V ) and let B : [β0, β1] → [0, 1]
be a function that is equal to 0 in a neighbourhood of β0 and equal to 1 in a
neighbourhood of β1. We set

X̌k := (B ◦Sk) ·Xk ∈ Γ(H ) .

We observe that

• X̌k = 0 on {Sk < β0} , • X̌k = Xk on H \ {Sk < β1} ,

and, hence, the flow ΦX̌k is positively complete.
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3.3. Proof of Theorem 3.1. Let us define I∗ as the set{
k ∈ [k0, k1)

∣∣∣ ∃C(k∗) such that cG (k)− cG (k∗) ≤ C(k∗)(k − k∗), ∀k ∈ [k∗, k1]
}
.

Namely, I∗ is the set of points at which cG is Lipschitz-continuous on the right.
Since cG is a non-decreasing real function, by Lebesgue Differentiation Theorem,
cG is Lipschitz-continuous at almost every point. In particular, I \I∗ has measure
zero.

We are now ready to show that

(1) for all k ∈ I , there exists a vanishing sequence (hkm)m∈N ⊂H \{Sk < β0}
and that

(2) for all k∗ ∈ I∗, such vanishing sequence can be taken to satisfy

sup
m∈N

T (hk∗m ) < C(k∗) + 3 .

We will prove only the statement about the vanishing sequences with parameter
in I∗, as the argument can be easily adapted to prove the statement for a general
parameter in I .

We assume by contradiction that there exists a positive number ε0 such that

(44) |αk∗ | ≥ ε0 , on {T < C(k∗) + 3} \ {Sk∗ < β1} .

Consider a decreasing sequence (km)m∈N ⊂ (k∗, k1] such that km → k∗. Set δm :=
km − k∗ and take a corresponding sequence (γm)m∈N ⊂ G such that

sup
Bd

S γm
km

< cG (km) + δm .

For every ξ ∈ Bd we consider the sequence of flow lines

uξm : [0, 1] −→H

r 7−→ Φ
X̌k∗
r (γm(ξ)) .

Conversely, for any time parameter r ∈ [0, 1], we get the map

(45) γrm := Φ
X̌k∗
r (γm) .

We readily see that γrm|∂Bd = γm|∂Bd and γrm ∈ G . In particular, for every ξ ∈ Bd
and r ∈ [0, 1] the concatenated curve

(46)
(
γm ◦ zξ

)
∗ uξm|[0,r] ∗

(
γrm ◦ zξ

)
is contractible. Therefore, Lemma 3.3 and Equation (39) yield

(47) S
γrm
k∗

(ξ) = S γm
k∗

(ξ) + αk∗(u
ξ
m|[0,r]) .

Finally, since uξm is a flow line, we have

αk∗(u
ξ
m|[0,r]) =

∫ r

0

αk∗

(
− B · ]αk∗√

1 + |αk∗ |2

)
(uξm(ρ)) dρ(48)

= −
∫ r

0

B · |αk∗ |2√
1 + |αk∗ |2

(uξm(ρ)) dρ .

Therefore αk∗(u
ξ
m|[0,r]) ≤ 0 and we find that, for every m ∈ N,

(49) r 7−→ S
γrm
k∗

is a non-increasing family of functions on Bd .
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Let us estimate the supremum of S
γrm
k∗

. When r = 0, (43) and the definition of
I∗ imply:

(50) sup
Bd

S γm
k∗
≤ sup

Bd
S γm
km

< cG (km) + δm ≤ cG (k∗) + (C(k∗) + 1) δm .

Thus, by (49) we get, for every r ∈ [0, 1],

(51) sup
Bd

S
γrm
k∗

< cG (k∗) + (C(k∗) + 1) δm .

If r ∈ [0, 1], we define the sequence of subsets of Bd

Jrm : =
{

S
γrm
k∗

> cG (k∗) − δm
}
.

Let us give a closer look to these sets. First, we observe that if ξ ∈ Jrm, then (47)
and (51) imply that
(52)
αk∗(u

ξ
m|[0,r]) > cG (k∗)− δm −

(
cG (k∗) + (C(k∗) + 1) δm

)
= − (C(k∗) + 2) δm .

Then, we claim that for m large enough

(53) ξ ∈ Jrm =⇒ γrm(ξ) ∈
{
T < C(k∗) + 3

}
\
{
Sk∗ < β1

}
, ∀ r ∈ [0, 1] .

First, we observe that

(54) S
γrm
k∗

(ξ) > cG (k∗) − δm ≥ sup
Bd

S
γrm
k∗
− (C(k∗) + 2) δm .

If m is large enough, then (C(k∗)+2) δm < (β∂V −β1) and Lemma 3.6 implies that
γrm(ξ) /∈ {Sk∗ < β1}. As a by-product we get that uξm|[0,r] is a genuine flow line of

ΦXk∗ . Then, we estimate T (γrm(ξ)). We start by taking r = 0. In this case from
(43) we get

T (γm(ξ)) =
S γm
km

(ξ)−S γm
k∗

(ξ)

δm
<

cG (km) + δm − cG (k∗) + δm
δm

< C(k∗) + 2 .

To prove the inequality for arbitrary r we bound the variation of T along uξm|[0,r]
in terms of the action variation:

−αk∗(uξm|[0,r]) = −
∫ r

0

αk∗

(
duξm
dρ

)
dρ ≥

∫ r

0

∣∣∣∣duξmdρ
∣∣∣∣2 dρ

≥ 1

r

(∫ r

0

∣∣∣∣duξmdρ
∣∣∣∣ dρ)2

≥ 1

r

(∫ r

0

1

1 + supH |dT |

∣∣∣∣d(T ◦ uξm)

dρ

∣∣∣∣dρ)2

≥ 1

r(1 + supH |dT |)2
|T (uξm(r))−T (uξm(0))|2 .

Using (52) and rearranging the terms we get for m large enough

|T (γrm(ξ))−T (γm(ξ))|2 ≤ r · (1 + sup
H
|dT |)2 · (C(k∗) + 2) δm < 1 .

Hence, if m is large enough the bound on T we were looking for follows from

(55) T (γrm(ξ)) ≤ T (γm(ξ)) + |T (γrm(ξ))−T (γm(ξ))| < (C(k∗) + 2) + 1 .

The claim is thus completely established.
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The last step to finish the proof of Theorem 3.1 is to show that J1
m = ∅ for m

large enough. By contradiction, let ξ ∈ J1
m. Since ξ ∈ Jrm for all r ∈ [0, 1], we see

that uξm is a flow line of ΦXk∗ contained in {T < C(k∗) + 3} \ {Sk∗ < β1}. Using
(52) and continuing the chain of inequalities in (48), we find

− (C(k∗) + 2) δm < αk∗(u
ξ
m) ≤ − ε2

0√
1 + ε2

0

(where we used that the real function w 7→ w√
1+w

is increasing). Such inequality

cannot be satisfied for m large, proving that the sets J1
m become eventually empty.

Finally, since J1
m = ∅, we obtain that cG (k∗) ≤ supBd S

γ1
m

k∗
≤ cG (k∗)− δm. This

contradiction finishes the proof of Theorem 3.1.

In the next section we will determine when ηk satisfies the hypotheses of the
abstract theorem we have just proved.

4. Proof of the Main Theorem

We now move to the proof of points (1), (2), (3) of Theorem 1.6. In the first
preparatory subsection, we will see when the action form is exact.

4.1. Primitives for ηk. We know that ηk is exact if and only if so is τσ. The next
proposition, whose simple proof we omit, gives necessary and sufficient conditions
for the transgression form to be exact.

Proposition 4.1. If [σ̃] 6= 0, then τσ|W 1,2
ν

is not exact for any ν.

If [σ̃] = 0, then

P̂σ : W 1,2
0 −→ R .

x 7−→
∫
B2

û∗xσ

is a primitive for τσ. Here ûx is any capping disc for x. This definition extends
the primitive Pσ, which we constructed on the subset of short loops.

If [σ̃]b = 0, then, given ν and a reference loop xν ∈W 1,2
ν ,

P̂σ : W 1,2
ν −→ R .

x 7−→
∫
B2

û∗xν ,xσ

is a primitive for τσ. Here ûxν ,x is a connecting cylinder from xν to x. If we take

x0 as a constant loop, the two definitions of P̂σ coincide on W 1,2
0 .

Exercise 6. Show that if M = T2 and [σ] 6= 0, then τσ|W 1,2
ν

is not exact if ν 6= 0.

We set Ŝk := Ak − P̂σ ◦ prW 1,2 in the two cases above where P̂σ is defined.

Theorem A in [CIPP98] tells us when Ŝk is bounded from below.

Proposition 4.2. If [σ̃] = 0, then Ŝk : Λ0 → R is bounded from below if and only

if k ≥ c(L, σ). If [σ̃]b = 0, the same is true for Ŝk : Λν → R.

Remark 4.3. Originally the critical value was introduced by Mañé as the infimum

of the values of k such that Ŝk : Λ0 → R is bounded from below [Mañ97, CDI97].
Thus, the proposition above establishes the equivalence between the more geometric
definition in (4) and the original one.
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Exercise 7. Prove that Ŝk|Λν is bounded from below if and only if Ŝk|Λ0
is bounded

from below if and only if Ŝk|Λ0
is non-negative.

As a by-product of Proposition 4.2, we can give a criterion guaranteeing that a
vanishing sequence for ηk has bounded periods, provided k > c(L, σ).

Corollary 4.4. Let ν ∈ [T,M ] and [σ̃]b = 0. If k > c(L, σ) and b ∈ R, then there
exists a constant C(ν, k, b) such that

∀ γ ∈ Λν , Ŝk(γ) < b =⇒ T < C(ν, k, b) .

Proof. We readily compute

T =
Ŝk(γ)− Ŝc(L,σ)(γ)

k − c(L, σ)
≤

b− infΛν Ŝc(L,σ)

k − c(L, σ)
=: C(ν, k, b) . �

4.2. Non-contractible orbits. We now prove the existence of non-contractible
orbits as prescribed by the Main Theorem.

Proof of Theorem 1.6.(1a). Let ν ∈ [T,M ] be a non-trivial class, σ be a magnetic
form such that [σ]b = 0 and k > c(L, σ). Thanks to Proposition 4.2, the infimum

of Ŝk on Λν is finite. Then, we apply Theorem 3.2 with H = Λν and Ŝ = Ŝk and

we obtain a vanishing sequence (γm)m∈N such that Ŝk(γm) is uniformly bounded.
By Corollary 4.4 the sequence of periods is bounded from above. By Corollary 2.12
the sequence of periods is also bounded away from zero. Therefore, we can apply
Proposition 2.8 to get a limit point of the sequence. �

4.3. Contractible orbits. We start by recalling a topological lemma.

Proposition 4.5. If d ≥ 1 and δ ≤ δ∗ (see Lemma 2.10), there are natural bijec-
tions

πd+1(M)

π1(M)
F

((

// [Sd+1, M ]

��[ (
Bd, ∂Bd

)
,
(
W 1,2

0 ,M0

) ] iM0
{`<δ}

//
[ (
Bd, ∂Bd

)
,
(
W 1,2

0 , {` < δ}
) ]

where πd+1(M)/π1(M) is the quotient of πd+1(M) by the action of π1(M)1. The
trivial classes on the second line are identified with the class of constant maps in
[Sd+1,M ] and with the class of the zero element in πd+1(M)/π1(M).

Proof. The first horizontal map is [û]
π1(M) 7→ [û]. We leave as an exercise to the

reader to show that is a bijection. The vertical map sends [û] to [u], where u is
defined as follows. Consider the equivalence relation ∼ on Bd × T:

(56) (z1, s1) ∼ (z2, s2) ⇐⇒ (z1, s1) = (z2, s2) ∨ z1 = z2 ∈ ∂Bd .

1Here a choice of an arbitrary base point q0 ∈M is to be understood: πd+1(M) := πd+1(M, q0)

and π1(M) := π1(M, q0)
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If we interpret Bd as the unit ball in Rd and Sd+1 as the unit sphere in Rd+2 we
can define the homeomorphism

Q :
Bd × T
∼

−→ Sd+1

[z, s] 7−→ (z,
√

1− |z|2 · e2πis) ,

where e2πis belongs to S1 ⊂ R2. We set u(z)(s) := (û ◦ Q)([z, s]). For a proof
that the vertical map is well-defined and it is a bijection, we refer the reader to
[Kli78, Proposition 2.1.7]. Finally, the second horizontal map is a bijection thanks
to Lemma 2.10. �

We can now prove the parts of the Main Theorem dealing with contractible
orbits.

Proof of Theorem 1.6.(1b). Let [σ̃]b = 0, k > c(L, σ) and fix some non-zero u ∈
πd+1(M), which exists by hypothesis. We apply Proposition 2.13 to the trivial
interval {k} and get the positive real numbers δ{k}, b{k} and T{k}. Let
(57)

Γu :=
{
γ = (x, T ) :

(
Bd, ∂Bd

)
−→

(
Λ0,M0 × {T{k}}

) ∣∣∣ [x] ∈ F
(
u/π1(M)

) }
By Proposition 4.5 we see that Γu ∈

[
(Bd, ∂Bd), (Λ0,M0 × {T{k}})

]
and that

i
M0×{T{k}}
V
δ{k}

(Γu) is non-trivial. Therefore, we apply Theorem 3.1 with H = Λ0 I = {k} Ŝk = Ŝk

β0 = b{k}/2 V = Vδ{k} M = M0 × {T{k}}
G = Γu


and we obtain a vanishing sequence (γm)m∈N such that

lim
m→+∞

Ŝk(γm) = cu(k) := inf
γ∈Γ

sup
Bd

Ŝk ◦ γ ≥ b{k} .

The sequence of periods (Tm) is bounded from above by Corollary 4.4. The sequence
(Tm) is also bounded away from zero by Corollary 2.12, since γm /∈ {Sk < b{k}/2}
for m big enough. Applying Proposition 2.8 we obtain a limit point of (γm). �

Proof of Theorem 1.6.(2). Let [σ̃] = 0 and fix I = [k0, k1] ⊂ (e0(L), c(L, σ)). Let
δI , bI and TI be as in Proposition 2.13. Fix γ0 ∈ M0 × {TI} and γ1 ∈ Λ0

such that Ŝk1(γ1) < 0. Such element exists thanks to Proposition 4.2. Let
u∗ : [0, 1] → Λ be some path such that u∗(0) = γ0 and u∗(1) = γ(1) and de-
note by [u∗] ∈ [(B1, ∂B1), (Λ0, {γ0, γ1})] its homotopy class. By Proposition 2.13,

γ0 and γ1 belong to different components of {Ŝk0 < bI}. Thus, i
{γ0,γ1}
{Ŝk0<bI}

([u∗]) is

non-trivial. Therefore, we apply Theorem 3.1 with
H = Λ0 I = I Ŝk = Ŝk

β0 = bI/2 V = {Ŝk0 < bI} M = {γ0, γ1}
G = [u∗]
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and we get a vanishing sequence (γkm)m∈N with bounded periods, for almost every
k ∈ I. Moreover, we have

lim
m→+∞

Ŝk(γm) = c[u∗](k) := inf
u∈[u∗]

sup
B1

Ŝk ◦ u ≥ bI .

In particular, γkm /∈ {Ŝk < bI/2} for m large enough. Hence, the periods are
bounded away from zero by Corollary 2.12. Now we apply Proposition 2.8 to get a
limit point of (γkm). Taking an exhaustion of (e0(L), c(L, σ)) by compact intervals,
we get a critical point for almost every energy in (e0(L), c(L, σ)). �

Proof of Theorem 1.6.(3). Let [σ̃] 6= 0 and fix I = [k0, k1] ⊂ (e0(L),+∞). Let
δI , bI and TI be as in Proposition 2.13. Since [σ̃] 6= 0, there exists a non-zero
u ∈ π2(M). We set

(58) Γu :=
{
γ = (x, T ) :

(
B1, ∂B1

)
−→

(
Λ0,M0×{TI}

) ∣∣∣ [x] ∈ F
(
u/π1(M)

) }
By Proposition 4.5 we see that Γu ∈

[
(B1, ∂B1), (Λ0,M0 × {TI})

]
and that

i
M0×{TI}
VδI (Γu)

is non-trivial. Therefore, we apply Theorem 3.1 with H = Λ0 I = I αk = ηk

β0 = bI/2 V = VδI M = M0 × {TI}
G = Γu


and we obtain a vanishing sequence (γkm)m∈N ⊂ Λ0 \ {Sk < bI/2} with bounded
periods, for almost every k ∈ I. Since, the periods are bounded away from zero by
Corollary 2.12, Proposition 2.8 yields a limit point of (γkm), for almost every k ∈ I.

Taking an exhaustion of (e0(L),+∞) by compact intervals, we get a contractible
zero of ηk for almost every k > e0(L). �

5. Magnetic flows on surfaces I: Tăımanov minimizers

In this and in the next section we are going to focus on the 2-dimensional case.
Therefore, let us assume that M is a closed connected oriented surface. In this case
H2(M ;R) ' R, where the isomorphism is given by integration and we identify [σ]
with a real number. Up to changing the orientation on M , we assume that [σ] ≥ 0.

For simplicity, we are going to work in the setting of Section 1.6 and consider
only purely kinetic Lagrangians. Namely, we take L(q, v) = 1

2 |v|
2, where | · | is

induced by a metric g.
Since L depends only on g, we will use the notation (g, σ) where we previously

used (L, σ). We readily see that em(L) = e0(L) = 0 and that c(g, σ) = 0 if and
only if σ = 0 (see Proposition 1.4). We recall that the periodic orbits with positive
energy are parametrized by a positive multiple of the arc-length. Thus, they are
immersed curve in M .
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5.1. The space of embedded curves. The space of curves on a 2-dimensional
manifold M has a particularly rich geometric structure. Observe, indeed, that for
n ≥ 3 the curves on M are generically embedded. On the other hand, if M is
a surface, intersections between curves and self-intersections are generically stable.
Therefore, one can refine the existence problem by looking at periodic orbits having
a particular shape (see the beginning of Section 1.1 in [HS13] and references therein
for a precise notion of the shape of a curve on a surface). For example, we consider
the following question.

For which k and ν there exists a simple periodic orbit γ ∈ Λν with energy k > 0?

Let us start by investigating the case ν = 0. If γ = (x, T ) is a contractible simple
curve, there exists an embedded disc û : B2 → M such that û(e2πis) = x(s). This
map yields a path (u, T ) in Λ0 from a constant path (x0, T ), representing the centre
of the disc, to (x, T ). Integrating ηk along this path and summing the value of Sk
at (x0, T ), we get

(59)

∫ 1

0

(u, T )∗ηk + Sk(x0, T ) =
e(x)

2T
+ kT −

∫
B2

û∗σ .

Since û is an embedding, area(û) ≤ area(M) and we find a uniform bound from
below

(60)

∫ 1

0

(u, T )∗ηk + Sk(x0, T ) ≥ 0 + 0 − sup
M
|σ|·area(û) ≥ − sup

M
|σ|·area(M) .

This observation gives us the idea of defining a functional on the space of simple
contractible loops and look for its global minima. First, we notice that

∫
B2 û

∗σ is
invariant under an orientation-preserving change of parametrization. In order to
make the whole right-hand side of (59) independent of the parametrization, we ask
that (γ, γ̇) ∈ Σk. This implies that

√
2k · T = `(x) , e(x) = `(x)2 .

Substituting in (59), we get

(61)

∫ 1

0

(u, T )∗ηk + Sk(x0, T ) =
√

2k · `(∂D) −
∫
D

σ =: Tk(D) ,

where

D = [û] ∈ D(M) :=

{
embeddings û : B2 −→M ,

up to orientation-preserving reparametrizations

}
and ∂D represents the boundary of D oriented in the counter-clockwise sense. We
readily see that the critical points of this functional correspond to the periodic
orbits we are looking for.

Proposition 5.1. If D is a critical point of Tk : D(M) → R, then ∂D is the
support of a simple contractible periodic orbit with energy k.

In view of this proposition and the fact that Tk is bounded from below, we
consider a minimizing sequence (Dm)m∈N ⊂ D(M). However, the sequence Dm

might converge to a disc D∞ which is not embedded. For example, D∞ might
have a self-tangency at some point q on its boundary (see Figure 1). However, in
this case the support of D∞ in M can be interpreted as an annulus A∞ whose two
boundary components touch exactly at q. Now we can resolve the singularity in the
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Figure 1. Minimizing sequence for Tk on D(M)

space of annuli and get an embedded annulus A close to A∞. The key observation
is that Tk can be extended to the space of annuli and that

(62) Tk(D∞) = Tk(A∞) > Tk(A) .

To justify the inequality in the passage above, we observe that `(∂A) < `(∂A∞)
from classic estimates in Riemannian geometry and that the contribution given by
the integral of σ is of higher order. This heuristic argument prompts us to give the
following definitions.

Definition 5.2. Let E(M) = {oriented embedded surfaces Π → M} ∪ {∅} and
denote by E+(M) and E−(M) the surfaces having the same orientation as M and
the opposite orientation, respectively. If Π ∈ E(M), then ∂Π denotes the (possibly
empty) multi-curve made by the boundary components of Π. If we define the length
`(∂Π) as the sum of the lengths of the boundary components, we have a natural
extension

Tk : E(M) −→ R

Π 7−→
√

2k · `(∂Π) −
∫

Π

σ .
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As in (60) we find that Tk is bounded from below by − sup |σ| ·area(M). Moreover,
we observe that there is a bijection

(63)
E+(M) −→ E−(M)

Π 7−→ M \ Π̊
such that Tk(M \ Π̊) = Tk(Π) +

∫
M

σ .

Therefore, it is enough to look for a minimizer on E−(M). The chain of inequalities
(62) hints at the following result.

Proposition 5.3. For all k > 0, there exists a minimizer Πk of Tk|E−(M). If

∂Πk = {γki }i, then the γki are periodic orbits with energy k.

For a rigorous proof of this proposition we refer to [Tăı93] and [CMP04]:

• In the former reference, Tăımanov uses a finite dimensional reduction and
works on the space of surfaces Π ∈ E(M) whose boundary is made by
piecewise solutions of the twisted Euler-Lagrange equations with energy k.
• In the latter reference, the authors use a weak formulation of the problem

on the space of integral currents I2(M) ⊃ E(M).

In order to use Proposition 5.3 to prove the existence of periodic orbits with energy
k, we have to ensure that ∂Πk 6= ∅. To this purpose, we observe that ∂Πk = ∅
implies Πk ∈ {∅,M}, where M is M with the opposite orientation. We easily
compute Tk(∅) = 0 and Tk(M) =

∫
M
σ ≥ 0. Therefore, for every k > 0 we have

inf
E−(M)

Tk ≤ 0 and
(

inf
E−(M)

Tk < 0 =⇒ ∂Πk 6= ∅
)
.

Since the family of functionals Tk is monotone in k, we are led to define

(64) τ(g, σ) := inf
{
k
∣∣ inf
E−(M)

Tk = 0
}
.

Proposition 5.4. The value τ(g, σ) is a non-negative real number. Moreover,

τ(g, σ) > 0 ⇐⇒ σq0 < 0 , for some q0 ∈M .

If σ is exact, then

(65) τ(g, σ) = c0(g, σ) := inf
dθ=σ

sup
q∈M
|θq| .

We leave the proof of the first statement of the proposition as an exercise to the
reader. The second statement follows from [CMP04]. We can summarize our answer
to the question raised at the beginning of this section with the following theorem.

Theorem 5.5. Suppose that there exists q0 ∈M such that σq0 < 0. Then, we can
find a positive real number τ(g, σ), coinciding with c0(g, σ) when σ is exact, such
that for every k ∈ (0, τ(g, σ)), there exists a non-empty set of simple periodic orbits
{γki } having energy k and satisfying∑

i

[γki ] = 0 ∈ H1(M ;Z) .
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6. Magnetic flows on surfaces II: stable energy levels

In this last section we continue the study of twisted Lagrangian flows of kinetic
type on surfaces by investigating the stability properties of their energy levels. To
have a better geometric intuition, we are going to pull-back the twisted symplectic
form to the tangent bundle. Thus, let [ : TM → T ∗M be the duality isomor-
phism given by g. We define the twisted tangent bundle as the symplectic manifold
(TM,ωg,σ), where ωg,σ := d([∗λ) − π∗σ. We readily see that X(g,σ) is the Hamil-
tonian flow of E with respect to the symplectic form ωg,σ. In this language, our
problem is to understand when the hypersurface Σk is stable in the twisted tangent
bundle. We will summarize the current knowledge on the subject in the following
four propositions.

The first one sheds light on the relation between stability and the contact prop-
erty in the generic case.

Proposition 6.1. Let k > 0. If [σ] 6= 0 and M = T2, Σk is not of contact type.
Moreover, if X(g,σ)|Σk does not admit any non-trivial integral of motion, then:

(1) If [σ] = 0 or M 6= T2 and [σ] 6= 0, Σk is stable if and only if it is of contact
type.

(2) If M = T2 and [σ] 6= 0, every stabilizing form on Σk is closed and it has
non-vanishing integral over the fibers of π.

The second proposition gives obstruction to the contact property.

Proposition 6.2. The following statements hold true.

(1) If [σ] = 0, then Σk is not of negative contact type.
(2) If [σ] 6= 0, then

(a) if M = S2, Σk is not of negative contact type;
(b) if M has genus higher than 1, there exists ch(g, σ) > 0 such that

• Σk is not of negative contact type, when k > ch(g, σ);
• Σch(g,σ) is not of contact type;
• Σk is not of positive contact type, when k < ch(g, σ);

The third proposition deals with positive results on stability.

Proposition 6.3. The following statements hold true.

(1) If [σ] = 0, Σk is of contact type if k > c0(g, σ). If M = T2, for every
Riemannian metric g there exists an exact form σg for which Σc0(g,σg) is
of contact type.

(2) If [σ] 6= 0 and M 6= T2, Σk is of contact type for k big enough.
(3) If σ is a symplectic form on M , then Σk is stable for k small enough.

The last proposition deals with negative results on stability.

Proposition 6.4. The following statements hold true.

(1) If [σ] = 0 and M 6= T2, Σk is not of contact type, for k < c0(g, σ);
(2) If [σ] 6= 0 and there exists q ∈M such that σq < 0, then

(a) when M 6= T2, Σk is not of contact type, for k low enough;
(b) when M = T2, Σk does not admit a closed stabilizing form, for k low

enough.
(3) If M = S2, there exists an energy level associated to some g and some

everywhere positive form σ, which is not of contact type.
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Before embarking in the proof of such propositions, we make the following ob-
servation.

Lemma 6.5. Let k > 0 and set s := 1/
√

2k. Then, the flows of Φ(g,σ)|Σk and
Φ(g,sσ)|Σ1/2

are conjugated up to a time reparametrization.

Proof. By Section 1.6 we know that the projections to M of the trajectories of
Φ(g,σ)|Σk and of Φ(g,sσ)|Σ1/2

both satisfy the equation κγ = s · f(γ). Therefore, if

t 7−→
(
γ(t),

dγ

dt
(t)

)
is a trajectory of the former flow and we set γs(t

′) := γ(st′), then

t′ 7−→
(
γs(t

′),
dγs
dt′

(t′)

)
=

(
γ(st′), s · dγ

dt
(st′)

)
is a trajectory of the latter flow. �

Therefore, given (g, σ), instead of studying the flow Φ(g,σ) on each energy level Σk,
we can study the 1-parameter family of flows Φ(g,sσ) on SM := Σ1/2 as s varies
in (0,+∞). The advantage of rescaling σ is that now we can work on a fixed
three-dimensional manifold: SM . The tangent bundle of SM has a global frame
(X,V,H) and corresponding dual co-frame (α,ψ, β), which we now define.

Let H ⊂ SM be the horizontal distribution given by the Levi-Civita connection
of g. For every (q, v) ∈ SM , X(q,v) and H(q,v) are defined as the unique elements
in H such that

d(q,v)π
(
X(q,v)

)
= v , d(q,v)π

(
H(q,v)

)
= ı · v .

Analogously, α(q,v) and β(q,v) are defined by

α(q,v)(·) = gq
(
v, d(q,v)π(·)

)
, β(q,v)(·) = gq

(
ı · v, d(q,v)π(·)

)
.

The vector V is the generator of the rotations along the fibers ϕ 7→ (q, cosϕv +
sinϕ ı · v). The form ψ is the connection 1-form of the Levi-Civita connection.
If W ∈ T(q,v)SM and w(t) = (γ(t), v(t)) is a curve such that w(0) = (q, v) and
ẇ(0) = W , then

ψ(q,v)(W ) = gq
(
∇γ̇(0)v, ı · v

)
.

Finally, we orient SM using the frame (X,V,H).
The proof of the following proposition giving the structural relations for the

co-frame is a particular case of the identities proven in [GK02].

Proposition 6.6. Let K be the Gaussian curvature of g. We have the relations:

(66) dα = ψ ∧ β , dψ = Kβ ∧ α = −Kπ∗µ , dβ = α ∧ ψ .

Using the frame (X,V,H) we can write

Xs := X(g,sσ) = X + sfV , ωs := ωg,sσ|SM = dα − sπ∗σ .

We also use the notation Φs for the flow of Xs on SM .

6.1. Stability of the homogeneous systems. Let us start by describing the
stability properties of the homogeneous examples introduced in Section 1.6.
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6.1.1. The two-sphere. In this case we have σ = µ = Kµ. Hence,

ωs = dα−sπ∗σ = d(α+sψ) and (α+sψ)(Xs) = (α+sψ)(X+sV ) = 1 + s2 .

Every energy level is of positive contact type.

6.1.2. The two-torus. In this case we compute

dψ = Kµ = 0 and ψ(Xs) = ψ(X + sV ) = s .

Every energy level is stable.

6.1.3. The hyperbolic surface. In this case we have σ = µ = −Kµ. Hence,

ωs = dα−sπ∗σ = d(α−sψ) and (α−sψ)(Xs) = (α−sψ)(X+sV ) = 1− s2 .

Every energy level Σk with k > 1
2 is of positive contact type. Every energy level Σk

with k < 1
2 is of negative contact type. As follows from Proposition 6.2, ch(g, σ) =

1/2 and Σ1/2 is not stable.

6.2. Invariant measures on SM . A fundamental ingredient in the proof of the
four propositions is the notion of invariant measure for a flow. In this subsection,
we recall this notion and we observe that twisted systems of purely kinetic type
always possess a natural invariant measure called the Liouville measure.

Definition 6.7. A Borel measure ξ on SM is Φs−invariant, if ξ(Φst (A)) = ξ(A),
for every t ∈ R and every Borel set A. This is equivalent to asking

(67)

∫
SM

dh(Xs) ξ = 0 , ∀h ∈ C∞(SM,R) .

The rotation vector of ξ is ρ(ξ) ∈ H1(SM,R) defined by duality on [τ ] ∈ H1(SM,R):

(68) < [τ ], ρ(ξ) > =

∫
SM

τ(Xs) ξ ,

where τ ∈ Ω1(SM) is any closed form representing the class [τ ].

Since Xs is a section of kerωs and ωs is nowhere vanishing, we can find a unique
volume form Ωs such that ıXsΩs = ωs. We can write Ωs = τs ∧ ωs, where τs is
any 1-form such that τs(Xs) = 1. We easily see that α(X + sfV ) = 1 + 0. Hence,
Ωs = α ∧ ωs = α ∧ dα. Notice, indeed, that α ∧ π∗σ = 0 since it is annihilated by
V .

Definition 6.8. The Liouville measure ξSM on SM is the Borel measure defined by
integration with the differential form α ∧ dα. It is an invariant measure for Φs for
every s > 0.

In order to compute the rotation vector of ξSM , we need a lemma which tells us
when ωs is exact. The easy proof is left to the reader.

Lemma 6.9. If σ is exact, then π∗σ is exact and we have an injection

(69)
Primitives of σ −−−−→ Primitives of ωs

ζ 7−−−−→ α − sπ∗ζ .
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If M 6= T2, then π∗σ is exact and we have an injection

(70)

Primitives of σ − [σ]

2πχ(M)
Kµ −−−−→ Primitives of ωs

ζ 7−−−−→ α − sπ∗ζ + s
[σ]

2πχ(M)
ψ .

If M = T2 and σ is non-exact, then ωs is non-exact.

We can now state a proposition concerning ρ(ξSM ).

Proposition 6.10. If [σ] 6= 0 and M = T2, then there holds ρ(ξSM ) = s[σ] · [SqM ],
where [SqM ] ∈ H1(SM,Z) is the class of a fiber of SM → M oriented counter-
clockwise. Otherwise, ρ(ξSM ) = 0.

Proof. Let [τ ] ∈ H1(SM ;R). We notice that

τ(Xs)α ∧ dα = ıXs

(
τ ∧ α ∧ dα

)
+ τ ∧ ıXs

(
α ∧ dα

)
= 0 + τ ∧ ωs .

Therefore,

< [τ ], ρ(ξSM ) > =

∫
SM

τ ∧ ωs = s

∫
SM

τ ∧ π∗σ .

If M = T2, then ST2 ' S1 × T2 and we can use Fubini’s theorem to integrate
separately in the vertical directions and in the horizontal direction. Observe that
since τ is closed, the integral over a fiber SqT2 does not depend on q. Thus we find∫

ST2

τ ∧ π∗σ = < [τ ], [SqT2] > · [σ] .

and the proposition is proven for the 2-torus. When M 6= T2, π∗σ is exact and,
therefore,

∫
SM

τ ∧ π∗σ = 0. The proposition is proven also in this case. �

We now proceed to the proofs of the four propositions.

6.3. Proof of Proposition 6.1. If M = T2 and [σ] 6= 0, then ωs is not exact by
Lemma 6.9. In particular, SM cannot be of contact type. This proves the first
statement of the proposition. Now let τs ∈ Ω1(SM) be a stabilizing form for ωs.
Since ker(dτs) ⊃ kerωs, there exists a function ρs : SM → R such that dτs = ρsωs.
Taking the exterior differential in this equation, we get 0 = dρs ∧ ωs. Plugging in
the vector field Xs we get 0 = dρs(Xs)ωs. Since ωs is nowhere zero, we conclude
that dρs(Xs) = 0. Namely, ρs is a first integral for the flow. By assumption, ρs
is equal to a constant. If ρs = 0, then τs is closed, if ρs 6= 0, then τs is a contact
form. Suppose the first alternative holds. Since τs(Xs) 6= 0 everywhere, we have

0 6=
∫
SM

τs(Xs)ξSM = < [τs], ρ(ξSM ) > .

By Proposition 6.10, this can only happen if M = T2 and < [τs], [SqT2] > 6= 0,
which is what we had to prove.
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6.4. Proof of Proposition 6.2. The proof of the second proposition is based on
the fact that when ωs is exact we can associate a number to every invariant measure
with zero rotation vector.

Definition 6.11. Suppose ωs is exact and that ξ is a Φs-invariant measure with
ρ(ξ) = 0. We define the action of ξ as the number

(71) Ss(ξ) :=

∫
SM

τs(Xs) ξ ,

where τs is any primitive for ωs. Such number does not depend on τs since ρ(ξ) = 0.

The action of invariant measures gives an obstruction to being of contact type.

Lemma 6.12. Suppose ωs is exact and that ξ is a non-zero Φs-invariant measure
with ρ(ξ) = 0. If Ss(ξ) ≤ 0, then SM cannot be of positive contact type. If
Ss(ξ) ≥ 0, then SM cannot be of negative contact type.

Proof. If SM is of positive contact type, there exists τs such that dτs = ωs and
τs(Xs) > 0. Therefore,

Ss(ξ) =

∫
SM

τs(Xs) ξ ≥ inf
SM

τs(Xs) · ξ(SM) > 0 .

For the case of negative contact type, we argue in the same way. �

Let us now compute the action of the Liouville measure.

Proposition 6.13. If σ is exact, then

(72) Ss(ξSM ) = ξSM (SM) = 2π[µ] .

If M 6= T2, then

(73) Ss(ξSM ) = ξSM (SM) + s2 [σ]2

χ(M)
.

Proof. If σ = dζ, then α− sπ∗ζ is a primitive of ωs by Lemma 6.9 and we have

(74) (α− sπ∗ζ)(Xs)(q,v) = 1 − sζq(v) , ∀ (q, v) ∈ SM .

Consider the flip I : SM → SM given by I(q, v) := (q,−v). We see that

(I∗α)(q,v) = αI(q,v)dI = gq(−v, dπdI·) = αI(q,v) .

Hence ξSM is I-invariant. However, ζ ◦ I(q, v) = −ζ(q, v). Therefore,

(75)

∫
SM

ζ ξSM = 0

and from the definition of action given in (71), we see that (72) is satisfied. To

prove the second identity, we consider a primitive α − sπ∗ζ + s [σ]
2πχ(M)ψ for ωs as

prescribed by Lemma 6.9. We compute

(76)

(
α − sπ∗ζ + s

[σ]

2πχ(M)
ψ

)
(Xs)(q,v) = 1 − sζq(v) + s2 [σ]

2πχ(M)
f(q) .

Thus, we need to estimate the integral of f ◦ π on SM . Let Ui be an open cover of
M such that SUi ' S1 × Ui and let ai be a partition of unity subordinated to it.
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We have∫
SM

f(q)α ∧ dα =

∫
SM

f(q)α ∧ ψ ∧ β = −
∫
SM

f(q)ψ ∧ π∗µ

= −
∑
i

∫
SUi

ai(q)ψ ∧ π∗σ

= −
∑
i

∫
S1×Ui

ai(q) (−dϕ ∧ π∗σ)

=
∑
i

∫
Ui

ai(q)σ

∫
S1

dϕ

= 2π
∑
i

∫
Ui

ai(q)σ

= 2π[σ] ,

where ϕ is an angular coordinate on SqUi going in the clockwise direction (hence the
presence of an additional minus sign in the third line). Putting this computation
together with (75), we get the desired identity. �

Proposition 6.2 now follows from Lemma 6.12 and Proposition 6.13 after defining

(77) ch(g, σ) := − [σ]2

4πχ(M)[µ]
, when M has genus higher than one .

Remark 6.14. We have seen in the homogeneous example above that ch(g, σ) =
c(g, σ). The relation between ch and the Mañé critical value was studied in general
by G. Paternain in [Pat09]. There the author proves that ch(g, σ) ≤ c(g, σ) and
that ch(g, σ) = c(g, σ) if and only if g is a metric of constant curvature and σ is a
multiple of the area form.

6.5. Proof of Proposition 6.3. Suppose that σ is exact and let us consider a
primitive α− sπ∗ζ given by Lemma 6.9. We have

(α − sπ∗ζ)(Xs)(q,v) = 1 − sζq(v) ≥ 1 − s sup
M
|ζ| .

Requiring that the right hand-side is positive is equivalent to saying that

k =
1

2s2
> sup

M

1

2
|ζ|2 .

Since this holds for every ζ which is a primitive for σ, we have that the last inequality
is equivalent to k > c0(g, σ). Contreras, Macarini and G. Paternain also found in
[CMP04] examples of exact systems on T2, which are of contact type for k = c0(g, σ)
(see also [Ben14a, Section 4.1.1]). We will not discuss these examples here and we
refer the reader to the cited literature for more details.

Let us now deal with the non-exact case. If M 6= T2, then we consider a primitive

of the form α− sπ∗ζ + s [σ]
2πχ(M)ψ and we compute

(78)
(
α − sπ∗ζ + s

[σ]

2πχ(M)
ψ
)

(Xs)(q,v) = 1 − sζq(v) + s2 [σ]

2πχ(M)
f(q) .
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We can give the estimate from below

1 − sζq(v) + s2 [σ]

2πχ(M)
f(q) ≥ 1 − s sup

M
|ζ| − s2

∣∣∣∣ [σ]

2πχ(M)

∣∣∣∣ · sup
M
|f |

and we see that this quantity is strictly positive for s small enough.
Suppose now that σ is a symplectic form on M . We have three cases.

(1) If M = S2, then the quantity in (78) is bounded from below by

1− s sup
M
|ζ|+ s2 [σ]

4π
· inf
M
f .

Since [σ] > 0, we have that inf f > 0 and we see that such quantity is
strictly positive for big s.

(2) If M has genus larger than 1, then the quantity in (78) is bounded from
above by

1 + s sup
M
|ζ| + s2 [σ]

2πχ(M)
· inf
M
f .

Since χ(M) < 0 and inf f > 0, such quantity is strictly negative for big s.
(3) If M = T2, then there exists a closed form τ ∈ Ω1(ST2) such that τ(V ) = 1

(prove such statement as an exercise). Thus, we get

(79) τ(Xs) = τ(X) + sf ≥ inf
SM

τ(X) + s inf
M
f

and such quantity is positive provided inf f > 0 and s is big enough.

6.6. Proof of Proposition 6.4. If σ is exact and k < c0(g, σ), we can use Theorem
5.5 to find an embedded surface Π ⊂M with non-empty boundary ∂Π = {γi} such
that Tk(Π) < 0 and the γi’s are periodic orbits of Φs (parametrized by arc-length).
Let (γi, γ̇i) be the corresponding curve on SM and let ξi be the associated invariant
measure. Define ξ∂Π :=

∑
i ξi. What is its rotation vector? Call π∗ : H1(SM ;R)→

H1(M ;R) the map induced by the projection π in homology and observe that

(80) π∗(ρ(ξ∂Π)) =
∑
i

π∗(ρ(ξi)) =
∑
i

[γi] = [∂Π] = 0 .

Exercise 8. The map π∗ is an isomorphism if M 6= T2.

Thus, we conclude that ρ(ξ∂Π) = 0, if M 6= T2. Let us compute the action in this
case. As before, we use a primitive α− sπ∗ζ:

Ss(ξ∂Π) =
∑
i

∫
SM

(1− sζq(v))ξi =
∑
i

∫ `(γi)

0

(
1− sζγi(γ̇i)

)
dt

=
∑
i

`(γi)− s
∫ `(γi)

0

γ∗i ζ(81)

= `(∂Π)− s
∫

Π

σ = sTk(Π) .

By hypothesis the last quantity is negative and Lemma 6.12 tells us that Σk cannot
be of positive contact type. Since by Proposition 6.2, Σk cannot be of negative
contact type either, point (1) of the proposition is proved.

We now move to prove point (2a) with the aid of a little exercise.
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Exercise 9. We prove a generalization of (81), when M 6= T2. Let Π be an
embedded surface such that ∂Π is a union of periodic orbits and let ξ∂Π be the
invariant measure constructed as before. Then,

(82)
Ss(ξ∂Π)

s
= Tk(Π) +

o(Π)χ(Π)[σ]

χ(M)
,

where o(Π) ∈ {+1,−1} record the orientation of Π. To prove such identity one
recalls that κγi = sf(γi) and then uses the Gauss-Bonnet theorem (taking into
account orientations) to express the integral of the geodesic curvature along ∂Π.
What happens if we consider M \ Π? Do the two expressions for Ss(ξ∂Π) agree?
Remember relation (63).

The problem with formula (82) is that Theorem 5.5 does not give any information
on the Euler characteristic of Π. To circumvent this problem we need the following
result by Ginzburg [Gin87] (see also [AB15, Chapter 7]).

Proposition 6.15. If sup f > ε for some ε < 0, there exists a constant C > 0
such that for every small enough k we can find a simple periodic orbit γk+ supported

on {f > ε} and such that `(γk+) ≤
√

2kC.
If inf f < −ε, for some ε > 0, there exists C > 0 such that for every small

enough k, there exists a simple periodic orbit γk− supported on {f < −ε} and such

that `(γk−) ≤
√

2kC.

If f is negative at some point, by Proposition 6.15, there exists γk− with the proper-

ties listed above, for k small. In particular, γk− bounds a small disc Dk
−. Since the

geodesic curvature of γk− is very negative, such disc lies in E−(M). When M 6= T2,
we use (82) and find

Ss(ξ∂Dk−

)
s

= Tk(Dk
−) − 2

χ(M)
[σ] .

By the estimate on the length of γk− we get that |Tk(Dk
−)| ≤ Ck2 (see (21)). There-

fore, Ss(ξ∂Dk−) has the opposite sign of χ(M) for k small enough. Combining Lemma

6.12 and Proposition 6.2, point (2a) is proven.
Let us deal now with the case of the 2-torus. Since [σ] > 0, by Proposition 6.15

there exists also γk+ bounding a disc Dk
+. Let Πk = Dk

− ∪Dk
+. We claim that the

measure ξ∂Πk has zero rotation vector.

Exercise 10. Prove the claim by showing that (γk+, γ̇
k
+) is freely homotopic in ST2

to [SqT2], namely the class of a fiber with orientation given by V . Analogously,
prove that (γk−, γ̇

k
−) is freely homotopic to a fiber with the opposite orientation.

If τs is a closed stabilizing form, we have that the function τs(Xs) is nowhere zero.
Therefore,

0 6=
∫
ST2

τs(Xs) ξ∂Πk = < [τs], ρ(ξ∂Πk) > = 0 ,

which is a contradiction.
We omit the proof of point (3), for which we refer the reader to [Ben14b].
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